
July 1990 UILU-ENG-90-2227
DAC-23

* COORDINATED SCIENCE LABORATORY
College of Engineering

I OTC FiLE COpy

* AD-A225 377

K PARALLEL SOLUTION
I OF SPARSE
* LINEAR SYSTEMS

ON A VECTOR
MULTIPROCESSOR

U COMPUTER
I DT-(C

I AUG 1 5 1990

Pi-Yu Chung D D
I
I
I

I UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

3 Approved for Public Release. Distribution Unlimited.

L1

S E C U R IT Y CL 5I AS I i 11U UP 1 " 13 FM u t
&Cp e e

REPORT DOCUMENTATION PAGE O 0 7"8

Unlasiie NOTnCUIYCASIIAIO b eSRCVEMRIG

I&2e SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAiLABIUTY OF REPORT

2b6DILASIICTIN/OWG____SHEUL Approved for public release;

I - E L S I I AT O / ~ N R OI G S H D L distribution unlim ited

I 4. PERFORM1ING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANI1ZATION REPORT NUMBER($)

TJILU-ENG-90-2227 (DAC-23)
Go. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 4g. NAME OF MONITORING ORGANIZATION

Coordinated Science Lab (A&W)Office of Naval Research
University of Illinois J N/A_______________________

6C. ADDRESS (Clip. Stat. WWd ZIP C**J 7b. ADDRESS (C0%y State. &W ZIP Coe)

1101 W. Springfield Ave. Arlington, VA 22217
Urban&, IL 61801

A& NAME OF FUNDING ISPONSORING 6 b. OFF ICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Joint Services A I ppUCAb&i N00014-84-C-0149I Electronics Program________ ________________________

IC. ADORE SS (0y,) Rtm. eind ZIP 0W 10. SOURCE OF FUNDING NUMBERS
22 7PROGRAM PROJECT TASK WORK UNIT

AlntnVA227ELEMENT NO. No. NO. SSJt NO.

It. TITLE (hkciu* S@aulty 0afuaton)IParallel Solt~iion of Sparse Linear Systems on a Vector Multiprocessor Computer
112. PERSONA" AUTHOR(S)

Chung, Pi-YuI 13s. TYPE OF REPORT 13b. TIME COVERED 14.1 DATE OF REPORT (yearaeh Aft aS PAEcouNd?
Technical PROM LRRsTO42aL9 1990 July 30 T "81

16. SJPPILEMENTAAY NOTATIN

'I. COSAT1 CODES It. SUBJECT TER~MS (5&n*Ww an mww N ecamy OAa m* by60 =
- FIELD GROUP SUB..ROUP Sparse remel partitioning, parallel solution, multi-

* ~~processln vectorization, IM-fa E z icn 0'ilv~
* ~~~node_ tear~nC 'f'- /','

19S. ABSTRACT (Cm'niu. an roem N necouey & ienft~ by blik nwmber)'

3' iThis paper describes an efficient approach for solving sparse linear systems using direct method
on a shared-memory vector multiprocessor computer. The direct method is divided into three
steps: LU factorization, forward substitution and backward substitution. If the size of the linear3 system is large, LU factorization is a very time-consuming step, so that concurrency and vectorization
are exploited to reduce execution time. Parallelism of LU factorization is obtained by partitioning the
matrix using multilevel node-tearing techniques. The partitioned matrix is reordered into a NBBDE (Nested Bordered-Block Diagonal) form. A nested-block data structure is used to store the sparse
matrix, enabling the use of vectorization as well as multiprocessing to achieve high performance.
This approach is s 'itable for many applications that require the repeated direct solution of sparse
linear systems with identical matrix structure, such as circuit simulation. The approach has been
implemented in a program that runs on an ALLIANT FXI8 vector multiprocessor with sharedI memory. Speedups in execution time compared to conventional serial computation with no vectoriza-
tion are up to 20 using eight processors.I

20. DISTRIBUTION /AVAJIABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
W UNCLASSIFIEDINUMITED 0 SAME AS RPT_ C3 OTIC USERS UnclassifiedI 2a. NAME Of RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Dn~ide Area Code) I22c. OFFICE SYMBOL

00 F"r 1473, JUN 34Previousedit6on are obsoie . SECURITY CLASSIFICATION OF TMIS PAGE3 UNCLASSIFIE~D

U
U
I

i PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS

ON A VECTOR MULTIPROCESSOR COMPUTERI
I

* BY

3 PI-YU CHUNG

B.S., National Taiwan University, 1986I
U
I

THESIS

U Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1990

NTIR CR4,1.3 WH.TAb

J.' W',(j it n

4-

3 Urbana, Illinois R

A@j i :+s
I o

U

ABSTRACT

I This thesis describes an efficient approach for solving sparse linear systems using the direct

3 method on a shared-memory vector multiprocessor computer. The direct method is divided into

three steps: LU factorization, forward substitution and backward substitution. If the size of the

U linear system is large, LU factorization is a very time-consuming step, so that concurrency and

3 vectorization are exploited to reduce execution time. Parallelism of LU factorization is obtained

by partitioning the matrix using multilevel node-tearing techniques. The partitioned matrix is

I reordered into a NBBD (Nested Bordered-Block-Diagonal) form. A nested-block data structure

is used to store the sparse matrix, enabling the use of vectorization as well as multiprocessing to

achieve high performance. This approach is suitable for many applications that require the

U repeated direct solution of sparse linear systems with identical matrix structure, such as circuit

3 simulation. The approach has been implemented in a program that runs on an ALLIANT FX/8

vector multiprocessor with shared memory. Speedups in execution time compared to conven-

I tional serial computation with no vectorization are up to 20 using eight processors.

I
I
I
I
I
I
I

I °

* ACKNOWLEDGEMENTS

I
I would like to express my sincere appreciation to my advisor, Professor Ibrahim N. Hajj,

for his consistent support, valuable discussions, and constant encouragement.

I would also like to express my gratitude to Dr. Mi-Chang Chang of Texas Instruments,

Inc., for his helpful guidance and support. Thanks also go to the Center for Supercomputing

1 Research and Development for providing access to the ALLIANT FX/8 Computer and to Profes-

sor Resve A. Saleh, Dr. Kyle A. Gallivan and Dr. Gung-Chung Yang at CSRD for helpful infor-

mation on programming the ALLIANT FX/8 and accessing examples. I would also like to thank

3 all the members of the Digital and Analog Circuits Group of the Coordinated Science Labora-

tory, especially Yun-Cheng Ju, for their assistance that made this thesis possible.

Finally, special thanks go to my father, Chung-Ming Chung, my mother, Fen-Fang Hsu,

3 and my husband, Yi-Min Wang, for their love, support, understanding and encouragement.

3 This research was supported by the Joint Services Electronics Program, contract number

N00014-84-C-0149.I
I
I
I
I
I
I

I

* iv

* TABLE OF CONTENTS

CHAPTER PAGE

1. IN TR O D U CTIO N ... 1

2. OVERVIEW OF PREVIOUS PARALLEL ALGORITHMS .. 4
2.1. Introduction .. 4
2.2. Task G ranularity ... 5

2.2.1. Fine-grain parallelism .. . 5
2.2.2. Large-grain parallelism .. . 8
2.2.3. M edium -grain parallelism 10

2.3. O rdering ... 13
2.3.1. Reordering .. 15
2.3.2. Partitioning .. 151 2.4. Scheduling ... 17
2.4.1. O ptim al scheduling ... 18
2.4.2. The levelized scheduling heuristic .. 19

2.5. C onclusion 20

3. A DATA STRUCTURE FOR LARGE SPARSE MATRICES 22
3.1. Introduction .. 22
3.2. Existing D ata Structure for Sparse M atrices .. 233 3.3. N ested Bordered Block D iagonal Form .. 23
3.4. N ested-block Structure for N B BD M atrices ... 27

1 4. AN EFFICIENT PARALLEL SOLUTION ALGORITHM .. 33
4.1. Introduction .. 33
4.2. A Standard Sequential Algorithm 34
4.3. Parallel A lgorithm s .. 34

4.3.1. Task description .. 36
4.3.2. A sequential algorithm .. 38
4.3.3. Scheduling .. 39

I 5. IM PLEM ENTA TIO N A N D RESU LTS ... 44
5.1. Introduction .. 44
5.2. Im plem entation .. 44
5.3. Results .. 46
5.4. The O ptim al Partitioning Level ... 49

I

Iv

56. APPLICATION IN CIRCUIT SIMULATION 51
6. 1. Introduction .. 51

6.2. Circuit Storage Scheme.. 52

6.3. Results .. 53

I7. CONCLUSIONS AND FUTURE WORK ... 56

APPENDIX. PROGRAM SOLVEP LISTING.. 58

REFERENCES .. 72

IA

3 LIST OF TABLES

4.1. Scheduling param eters of exam ple 3.1 .. 41
5.1. Speedups and vector length .. 48
5.2. Speedups .. 48

5.3. Speedups .. 49
5.4. M em ory size .. 49
5.5. M em ory size .. 54
6.1. Speedups .. 54
6.2. Speedups .. 54
6.3. M em ory size .. 54I6

I
I
I
I
I
I
I
I
I
I

I

IVii

3 LIST OF FIGURES

2.1. Example 2.1 ... 63 2.2. Fine-grain task tree of example 2.1 .. . 7
2.3. The NBBD blocks of example 2.1 .. 9
2.4. Large-grain task tree .. 9
2.5. M edium-grain task graph (1) .. . 12
2.6. Data storage scheme for Chen and Hu's approach .. 135 2.7. M edium-grain task tree (2) .. 14
2.8. The M CTG of example 2.1 ... 19
3.1. Example of multilevel node tearing ... 24
3.2. The NBBD matrix of example 3.1 ... 25
3.3. The blocks of the NBBD matrix in Figure 3.2 .. 263 3.4. The task tree of the NBBD matrix in Figure 3.2 ... 26
3.5. Nested-block structure for the example in Figure 3.2 ... 27
3.6. The lowest-level blocks of Figure 3.5 ... 28
3.7. The vector which stores the matrix elements .. 30
3.8. Address vectors for each block .. 31
3.9. The data storage for a block with empty border .. 32
4.1. Sequential algorithms for direct methods .. 35
4.2. The LU factorization of a block ... 37
4.3. Forward/backward substitutions of a block ... 38
4.4. A sequential algorithm for solving NBBD matrices .. 40
4.5. Scheduling algorithm .. . 42
4.6. Schedule of example 3.1 .. 43
5.1. CPU time for sequential codes and vector routines (100 iterations) 483 6.1. Example of subcircuit record ... 53

I
I
I
I
I.
I

I

3 CHAPTER 1

3 INTRODUCTION

3 It is known that the most time-consuming task in computer simulation of large systems is

solving large sparse linear systems. Many efforts have been made to use the power of

I parallel/vector computers in speeding up sparse matrix computations [1-9]. In this thesis we

3 consider the solution of linear sets of equations by the direct method as opposed to relaxation

methods. The direct method is used when relaxation methods are expected to be too slow or

1nonconvergent.

3 Consider the direct solution of

Ax=b (1.1)
where A is a real n x n sparse matrix, b is the right-hand side vector, and x is the unknown vector.

3 The solution is usually divided into three steps: LU factorization, forward substitution and back-

ward substitution. The time complexity of LU factorization is one order greater than that of for-

U ward and backward substitutions. When the system is large, LU factorization dominates the

3 solution time. Given that n is the number of equations in the linear system, it is known that the

time complexity for LU factorization is 0(n3) for a full matrix. However, the exploitation of

I sparsity can save enormous computation time. It has been observed that the complexity of the

3 solution algorithm is between 0 (n 1.2) and 0 (n 1.8), depending on the sparsity of the matrix.

The purpose of our research is to find an efficient solution on the vector multiprocessor

computer for those applications that require the repeated direct solution of sparse linear systems

3 with an identical matrix structure, such as circuit simulation. The main problem is that most

good sequential LU factorization algorithms for sparse matrices are not suitable to be parallel-

I

2

ized and vectorized directly because of high operation dependency and data sparsity. Different

methods must be found for the vector parallel computer architecture.

We will concentrate our research on speeding up the LU factorization; nevertheless, speed-

ups can also be achieved for forward and backward substitutions using similar methods. The LU

factorization involves two types of operations:

(1) Normalization operations, which involve dividing the nonzero elements of a row by the

diagonal element.

(2) Update operations, which involve the addition of a multiple of the elements of a source row

to the corresponding elements of a target row.

To parallelize the LU factorization one needs to break up the set of operations into a number of

tasks in order to identify those which can be performed in parallel at any given step in the solu-

tion procedure. In Chapter 2, recent approaches implemented on MIMI) (Multiple Instruction

stream-Multiple Data stream) computers are reviewed. The parallel solution of sparse linear sys-

tems includes three subproblems: (1) determine task size, (2) matrix ordering, and (3) task

scheduling. The existing algorithms for these three topics will be briefly described and dis-

cussed.

In our research, we find that the data storage scheme is very critical for vectorization. The

data sparsity and vector length will determine the efficiency of vectorization. In order to exploit

the maximum degree of vectorization, we introduce a special data storage scheme-- nested-block

structure in Chapter 3, which is especially suitable for vector multiprocessor computer architec-

ture. We first reorder the sparse matrix into nested Bordered-Block-Diagonal (NBBD) form and

store the matrix according to the NBBD form. A detailed example is given to explain how to

constiuct this data structure. A number of advantages are listed which simplify the solution

I3
I algorithm and accelerate the execution time.

3 In Chapter 4, a standard sequential algorithm and our parallel algorithm are presented.

Two levels of parallelism are exploited:

I (1) multiprocessing concurrency (coarse-grain): by multilevel partitioning

3(2) vector concurrency (fine-grain) : by vectorization

The parallelization and vectorization methods are given in detail. Task description and task

scheduling are also contained in this chapter.

3 In Chapter 5, we discuss implementation issues. Our algorithm has been implemented on

the ALLIANT FX/8, which is a shared-memory multiprocessor computer with eight vector pro-

cessors. Speedups compared to a sequential algorithm are given. Moreover, the relationship

3 between the levels of partitioning and solution time is studied. Promising results are obtained:

speedups of 6 to 20 can be achieved as compared to those for the conventional sequential

approach.

3 In Chapter 6, we apply our approach to circuit simulation. It is found that the nested-block

structure is an excellent choice for parallel circuit simulation. The programming issues for cir-

cuit simulation are discussed. The results are compared to those obtained by a sequential circuit

3 simulator.

U Chapter 7 concludes this thesis and introduces several tasks planned for the future.

I
I
I
I

4

CHAPTER 2

OVERVIEW OF PREVIOUS PARALLEL ALGORITHMS

2.1. Introduction

This chapter will survey recent approaches to solve sparse linear systems on MIMDE com-

puters. We will concentrate on the parallel algorithms of LU factorization for large sparse

matrices using MIMD computers, specially those approaches suitable for application domains

such as circuit simulation that require the repeated direct solution of sparse linear systems of

equations with identical zero-nonzero structure.

Consider the direct solution of

Ax=b (2.1)

in a parallel processing system, where A is n x n, sparse, large, and nonsingular. It is known that

the time complexity for LU factorization is 0(n3) for a full matrix. For sparse matrices it has

been observed that the complexity of the solution algorithm is between O(n1-2) and 0 (n 1.8),

depending on the sparsity of the matrix. Thus exploiting the sparsity of the matrices is of great

importance for minimizing both storage and execution time.

Parallelizing LU factorization of sparse matrices has three subproblems:

(1) determine task size,

(2) matrix ordering and

(3) task scheduling.

The amount of parallelism available depends on the size of the tasks, or task granularity. There

are three levels of granularity: fine-grain, medium-grain and large-grain. In Section 2.2, we will

*5

3 use a simple example to discuss several approaches using different levels of task granularity. In

i Section 2.3, we will describe how to increase the degree of parallelism and decrease the number

of operations by ordering. Different reordering and partitioning techniques are described. In

3 Section 2.4, different scheduling algorithms based on different assumptions are described. Con-

clusions are then given in Section 2.5.

2.2. Task Granularity

2.2.1. Fine-grain parallelism

Fine-grain parallelism is the parallelism exploited when the size of each task is a single

operation. The LU factorization involves two types of operations.

g (1) Normalization operations: dividing the nonzero elements of a row by the pivot.

(2) Update operations : addition of a multiple of the elements of a source row to the

I corresponding elements of a target row.

3 Wing and Huang used these two types of operations as individual tasks [1], [2]. Consider the

example shown in Figure 2.1. The list of operations needed to LU decompose the matrix is

I given below.

3 I. a 1 3 =a 1 3 /aIl

2. a 3 3 =a 33 -a 13a 3 1

3. a 23-a 23/a22

4. a 2 6 =a 26 /a 22

5. a 33= a 33 - a 2 3a3 2

I
I

6

all a13

a 2 2 a 23 a 26

a 3 1 a 32 a 33 a36

a" a 45

a54 a,5 a

a 62 a 63 a 65 a66

Figure 2.1. Example 2.1

6. a 36
= - a 32a 26

7. a 63 = -a 62a 23

8. a66 = a 66 - a 26a 62

9. a 36 =a 36 /a 33

10. a66 = a66- a 36 a 63

11. a45 =a 45 /a4

12. a 55
= a 55 - a 45a 54

13. a65 =a 65/a55

14. a66=a66-a 65a5 6

If we assume that each task takes one unit of time, then it takes 14 units of time to complete

the LU factorization of the matrix, using a sequential algorithm. The levelized task graph for

these operations is shown in Figure 2.2. The numbers in the nodes correspond to the numbers of

I
1I
I

Level

I
3 23 2

11 6 5 3

1289 7 4

113 10 5
I

114 6

Figure 2.2. Fine-grain task tree of example 2.1

the operations in the list above. The arrows are the edges depicting dependencies. The max-

I imum number of tasks that has to be completed at any level is 4 (at level 4), and with four pro-

3 cessors, LU factorization can be completed in 6 units of time instead of 14.

The most important feature for fine-grain parallelism is:

I The maximum amount of parallelism between operations can be exploited because tasks

cannot be divided further.

I

8

However, there are some problems:

(1) The number of processors required to decompose a large system in minimum time is large.

It might not be possible to have shared memory MIMD computers that have that many pro-

cessors. Thus there is another optimal scheduling problem if the number of processors is

insufficient.

(2) There is a large overhead required for storing tasks and all temporary results.

We will see that large-grain anproaches are free from these two problems.

2.2.2. Large-grain parallelism

A large-grain approach used by Chang is based on a multilevel partitioning technique [5].

According to the partitioning, the matrix is reordered into a nested bordered-block-diagonal

(NBBD) form. The LU factorization process for the whole matrix can then be divided into

several tasks, where each task consists of the LU factorization of the submatrices in diagonal

blocks.

The example in Figure 2.1 is in NBBD form. The block representation is shown in Figure

2.3 and its corresponding task graph is shown in Figure 2.4. The set of operations associated

with the LU factorization of each submatrix is given below.

Bit: a 13 =a 13 /all,a 33 =a 33 -a 13a 31

B 22: a23=a 23 /a 22,a 26 =a 26/a 22,a 33 =a 33 -a 23a 32

a36=-a32a26 ,a 63=-a 6 2a23,a66"a66-a 2 6 62

B 33: a 36 =a 36 /1 33,a66=a66-36a63

B44: a 4 5 = a 45 /a44, a 5 5 = a 55 -a 4 5a 54 , a 6 5 =a 6 5 /a 55 ,a 66 = a 66 - a 65a 56

I

*9

U

B22 W23 W25

3 V31 V32 B33 W35

I B W45

V51 2V5 3 V54 B55

Figure 2.3. NBBD blocks of example 2.1

3 Bss: none

For this approach, the task graph is always a tree. The task tree for example 2.1 has three

levels: the first level-B 53 is the root of the tree, the second level-B 33 and B", are two children of

SB 55 , and the third level-B11 and B 22, are children of B 33. Thus two processors are enough to

achieve maximum parallelism.

I
I
I
I

Figure 2.4. Large-grain task tree

I
I

10

Large-grain parallelism has a major drawback. It exploits only a limited amount of paral-

lelism. Chang solved this problem by further partitioning the submatrices into smaller ones.

Thus parallelism will increase. But because the tasks do not necessarily take the same amount of

execution time, optimal scheduling becomes a more difficult problem.

2.2.3. Medium-grain parallelism

Medium-grain parallelism uses tasks consisting of more than one operation. This is

achieved by combining a set of nodes in the fine-grain task graph into a single node. Most

approaches use a vector operation as a task. Thus they always exploit two levels of parallelism,

namely,

(1) The concurrent processing of tasks and

(2) The pipeline processing inside tasks.

There are various ways of implementing the above two levels of parallelism; consequently, there

are different kinds of medium-grain parallelism. In the following we describe two such

approaches.

Approach 1

Sadayappan and Visvanathan proposed a method for parallel vector machines [6]. Because

the matrix elements are stored row by row in compressed vector form, there are one data vector

and one index vector corresponding to each row. The set of operations at each task in Figure 2.1

is given below and the task graph is shown in Figure 2.5.

1. a 13=a 13/all

2. a 33 =a 33 - a 13a 3 1

I

U 3. a 2 3 =a2 3 /a 2 2 , a 2 6 =a 26 /a 2 2

4. a 33 =a 33 -a 32a 23, a36=-a 32a 26

5. a 6 3 = -a 6 2a 23 , a66 =a 66 -a 62 a 26

6. a 36 =a36/a 33

7. a 66 =a 66 -a 36a 63

8. a 45
= a 4 5 / a44

9. a 55
= a 55 -a 45a54

1 10. a65=a651a55

11. a66=a66-a 65a 56

The problem is, for update operations, matching source-row elements with the appropriate

elements of the various target rows will require scattering and gathering target rows or scanning

the target rows to locate the corresponding elements. This requires either large memory or time

overhead. In [6] this problem is solved by explicitly enumerating the target elements involved in

I each operation during a symbolic analysis phase. The indices are then stored in a Target-

3 Indirection-Vector to facilitate source-target element matching at run time.

Approach 2

Chen and Hu proposed a different computation model [7]. They also reordered the matrix

3 into an NBBD form so that a high degree of concurrency can be obtained. The matrix elements

are stored row by row in compressed vector form for the upper triangular part and column by

column for the lower triangular part, as shown in Figure 2.6. A normalization task of stage k is

referred to as Tt. A row-column updating task at stage k is referred to as Ti, wherej is the

number of the row-column pair being updated. The task graph is shown in Figure 2.7. The list

I

12

13

2
8 245

9 6

10 7

11

Figure 2.5. Medium-grain task graph of approach I

of operations necessary for LU factorization is shown below.

T :a 13 = a 13 /al

Tt':a3 3 = a 33 - a 13a 31

T22:a 23 = a 23 / a 22, a 26 = a 26/a 22

T :a 33 = a 3 3 - a 2 3a 32, a 36 = - a 3 2a 26, a 6 3 = -a 6 2a 23

T2 :a66 = a66 - a 26a 6 2

T3:a36 = a
36 / a 33

I

* 13

all a 13

a 22 a 23 a 2 6

a 3, a 32 a 33 F

a" a45

a4 a55 a56

a62 " a6 5 Fa6
Figure 2.6. Data storage scheme for Chen and Hu's approach

T36:a66 =a66 - a 6a63

T4:a 45 =a 45 / a4

T45:a55 =a 55 -a 45a 54

T5:a 65= a 65 /a 55

T5:a66 = a66 - a65a 56

This method has more short vector operations than the previous method does, which makes

I it very inefficient for applying it on a vector machine because of the short vector operations, but

the higher degree of concurrency still can result in speedups.

* 2.3. Ordering

The purpose of ordering is to increase the degree of parallelism and to decrease the number

I of operations. In sparse matrix techniques, the number of operations depends on the order in

3 which the rows and columns are arranged because of fill-ins during the factorization process.

I

14

TIi

Tif

Figure 2.7. Medium-grain task tree (2)

Also, for parallel processing, the degree of parallelism and the minimum completion time are

closely related to the matrix ordering. However, the goals of minimizing the completion time

and minimizing the fill-ins are conflicting. This makes ordering a difficult problem. There are

two type of approaches to finding an appropriate ordering:

(1) reordering, i.e., select the variables that are ordered first first.

(2) partitioning, i.e., select the variables that are ordered last first.

But, so far there is no exact solution to optimal ordering.

i

*15

i 2.3.1. Reordering

Huang and Wing proposed a heuristic reordering algorithm which chooses the next pivot

based on a comparison among all diagonal elements [I]. The algorithm computes two parame-

U ters for every unordered pivot each time:

I (1) the number of operations required for further decomposition and

(2) the depth that the task graph is expected to grow into.

I Because we want to minimize both, the pivot that generates the minimum weighted sum of these

two parameters will be picked as the next pivot. The disadvantage of this algorithm is that it

requires a time-consuming procedure for monitoring the growth of the task graph depth while

* choosing pivots.

Another way of doing this reordering is by pivot independency. Smart and White proposed

an algorithm called large independent set reordering [10]. In this algorithm, any pivot i can be

I included in an independent set only if aij and aji are both zero for any pivot j already in that set.

The basic idea is that at a certain step in the elimination process, a set of candidate pivots is con-

structed from those pivots with low Markowitz counts. From the set, a large independent set is

U extracted. All the pivots in an independent set can be processed concurrently with no conflicts,

except that more than one pivot may contribute a term to the same update destination. Thus, a

certain degree of parallelism is obtained. Test results show that Huang's and Smart's reordering

I methods obtain approximately the same degree of parallelism [10].

I 2.3.2. Partitioning

3 Partitioning can be viewed as a graph approach to reordering the matrix. The induced

graph for a matrix is constructed as follows: Each row/column corresponds to a vertex in the theI
I

16

graph. Vertex i and vertex j are connected if and only if aij is nonzero. To partition the graph, a

separator set in the induced graph is found and removed. The remaining graph will have two or

more disconnected components. The pivots in each component are ordered first and the pivots in

the separator set are ordered at the end of the matrix; thus, the matrix becomes a bordered-

block-diagonal form. If we further partition each component and order the pivots inside that

component using the same rules, we can obtain an NBBD form ordering.

We already saw that the block dependency in NBBD form has a tree structure. The pivots

in different blocks at the same level can be processed concurrently. But the pivots in a parent

block (border or separator block) can only be processed after all pivots in the children's blocks

are done. In order to minimize the total factorization time, the goal of partitioning is

(1) to minimize the separator sets

(2) to minimize the size of largest submatrices (this is equivalent to finding a balancing parti-

tioning).

There are a number of partitioning algorithms available, but no optimal solution has been found,

and the performance of each algorithm depends on the graph structure. We consider three exist-

ing general algorithms: nested dissection method [11], Kemighan and Lin's algorithm [12] and

RESP (Restricted Exhaustive Search Partitioning) algorithm by Chang [5].

The nested dissection method proposed by George and Liu is a popular partitioning algo-

rithm. It starts with an initial vertex which is assigned to level 1. Its neighboring vertices are

then assigned to level 2, and so on. The set of vertices at level L which connects to level L +1 is

then selected as the separator set, where L is the maximum number of levels assigned. This

algorithm is fast, but may result in a large separator set and unbalanced partitioning (the sizes of

I

S17
* components could vary a lot).

Kemighan and Lin's graph partitioning algorithm starts with some random partitioning and

then tries to exchange subsets of vertices between different subgraphs. Only those exchanges

which lead to smaller separator sets are actually performed. The algorithm stops when there are

no more exchanges that produce smaller separator sets. This method has been shown to give a

near optimal solution for balanced partitioning.

I The basis of Chang's RESP algorithm is to check whether there is a separator set with only

one node. If so, then the separator clearly has minimum size; otherwise, a node with maximum

degree (degree of a node is the number of neighbors of the node) or minimum radius (radius of a

I node is the maximum of the distance between the node and all other nodes) will be deleted, and

the checking for one-node separator continues. The process repeats until a one-node separator

set is found. The node together with the already deleted nodes form a separator for the original

I graph.

The RESP algorithm usually produced unbalanced partitioning but with a smaller separator

set. For parallel processing, a small separator set is preferred because the pivots in the separator

I set are always factorized sequentially after the diagonal blocks are factorized, which seriously

decrease parallelism. Thus we choose to apply RESP as our partitioning algorithm.

* 2.4. Scheduling

Scheduling is to assign tasks to a given number of processors such that the constraints in

I the task graph are followed and total execution time is minimized. Static scheduling is used in

almost all approaches; that is, the task assignment is determined before computation.

I
I

18

2.4.1. Optimal scheduling

An optimal scheduling solution can be found if the following two conditions are met: (1)

the number of processors is infinite and (2) each task takes the same amount of time. Sadayap-

pan and Visvanathan proposed an algorithm to obtain an optimal scheduling [13]. It can be used

in both fine-grain and medium-grain approaches as long as the above two conditions stand.

They used Minimally Constrained Task Graphs (MCTGs) instead of Directed Acyclic Graphs

(DAGs) as in Figure 2.2. The MCTGs contain both directed edges and undirected edges.

Directed edges are used only to represent strict temporal dependences, while undirected edges

model constraints on the non-simultaneity nf execution of multiple updates to a common matrix

element. Figure 2.8 shows the MCTG of example 2.1. According to the MCTG, the greedy

level assignment algorithm is used to assign tasks to an unbounded number of processors. The

greedy level assignment algorithm assigns positive integer level numbers to the nodes of the

MCTG so that:

(1) each node has a level number that is higher than that of any of its predecessor nodes.

(2) no two sibling nodes (connected by an undirected edge) are assigned the same level, and

(3) the highest assigned level number is as small as possible.

This algorithm was evaluated and shown to provide up to fifty percent improvement over

conventional approaches, but the refinements required to accommodate the characteristics of

practical finite-processor systems for their effective scheduling are still open questions for

further research.

I

* 19

I

I 1 3

I 114 2 5 7

I
12 8 6

139

Figure 2.8. The MCTG of example 2.1

2.4.2. The levelized scheduling heuristic

If the number of processors is finite and each task takes the same amount of time, Hu's

levelized algorithm is usually used [1]. Given a task graph, a node is called a final node if there

does not exist another node in the graph which must be executed after it. Conversely, a node is

called a starting node if there does not exist another node in the graph which must be executed

before it. Let m be the number of processors; the algorithm is described as follows:

(1) Label all nodes with x+1, where y is the length of the longest path from the node to the final

node in task graph.

I
I

20

(2) If the total number of starting nodes is not greater than m, then choose all starting nodes for

processing. If it is greater than m, choose m starting nodes with values not less than those

not chosen.

(3) Remove completed tasks from the graph, and repeat the rule for the remaining graph.

2.5. Conclusions

In this chapter, we have discussed three aspects of the parallel solution of sparse linear sys-

tems, namely, task granularity, ordering and scheduling.

The approaches corresponding to the three levels of task granularity are described.

Although fine-grain parallelism exploits the maximum amount of parallelism, it has high

scheduling and memory overhead. Large-grain parallelism, although relatively free from such

problems, exploits very little parallelism. Medium-grain parallelism is seen to be a good

compromise between the two extremes.

The issue of ordering for increasing parallelism and decreasing the number of operations

was also addressed. We saw that the two goals were conflicting and there was no optimal solu-

tion for this problem right now. For small-grain approaches, Huang and Wing's method

compromises these two factors during reordering. Smart and White's method tries to obtain a

large independent set of pivots and at the same time keep the Markowitz sum small. For large-

grain approaches, partitioning is always used to obtain nested bordered-block-diagonal form.

Minimizing separator sets and balancing submatrices are two objectives of partitioning. Nested

dissection recursively cuts graphs in the middle. It is fast, but the results may not be good for

certain structures. Kemighan and Lin's algorithm which iteratively exchanges vertices in dif-

ferent components seems to produce better partitioning.

I

I Scheduling is an important aspect of any parallel algorithm. The optimal solution can be

found if the number of processors is infinite and the tasks are homogeneous. For small-grain

approaches, Hu's levelized scheduling heuristic is used if the number of processors is finite.

I Chen and Hu ran their algorithm on the Sequent Balance 21000. Sadayappan and

Visvanathan implemented their medium-grain approach on a Cray X-MP using overlap-scatter

data structure. It is not surprising that their medium-grain approach exploiting vector processing

I gives the most promising speedups.

I
I
I
iI
I
I
I
I
I
I
I
I

22

CHAPTER 3

A DATA STRUCTURE FOR LARGE SPARSE MATRICES

3.1. Introduction

A good data structure for large sparse matrices is very critical to the speed of the LU factor-

ization process, especially for solving large sparse matrices efficiently on a vector multiproces-

sor computer. The important characteristics of a data structure for sparse matrices on a vector

machine are the following:

(1) It must preserve the sparsity of the matrices to save memory as well as number of opera-

tions.

(2) The matrix elements should be stored in a vector form in order to be accessed fast and be

suitable for vector operations.

(3) The matrix elements are always stored row by row each in a single vector; therefore, the

data structure should provide an efficient way for matching two rows with different element

distributions.

To exploit both parallelism and vectorization, we derive a new storage scheme--nested-

block structure, which has the three features listed above. The basic idea is obtained from the

nested Bordered-Block Diagonal form for sparse matrices. We will explain the details in later

sections.

In Section 3.2, we will discuss some popular storage schemes currently used in most appli-

cations. In Section 3.3, we will introduce the nested Bordered-Block Diagonal form for a sparse

matrix. In Section 3.4, nested-block structure will be described.

I

* 23

1 3.2. Existing Data Structure for Sparse Matrices

In this section, we will discuss existing data structures used for storing sparse matrices and

explain why they are not suitable for applications on parallel vector machines.

I The conventional orthogonal linked list structure [14] does preserve the sparsity of

matrices, but it is impractical for efficient operand access and vector operations. Another disad-

vantage is in greater storage demands because of having to hold the links (pointers) for each ele-

I ments.

Another alternative is to store each row as a packed sparse vector [15], also called scatter-

gather approach [6]. Because compressed vectors are used to store matrix elements, explicit

I scattering and gathering of vectors to match source and target rows are required. The operations

involving indirect addressing are not efficient for application on parallel vector machines.

Recently, Sadayappan and Visvanathan suggested a new data structure, namely, overlap-

I scatter representation of sparse matrices [161, in which they put every row of the matrix into one

long vector without compression. Because the matrix is sparse, the rows may overlap one

another to save space as long as no two nonzero elements occupy the same location. Although

I this method saves the scattering and gathering operations, the fitting strategy itself requires

time-consuming overhead. Also, it may need twice as much storage as the scatter-gather

approach.

I 3.3. Nested Bordered Block Diagonal Form

3 Our approach to solving large sparse linear systems is to use a nested Bordered-Block-

Diagonal (NBBD) form. The NBBD matrix can be obtained by multilevel node tearing tech-

niques [51 , [17], which partition the graph representation of the matrix recursively, then order

3 the matrix according to the partitioning. The LU factorization process for an NBBD form -atrix

I

24

can be divided into several tasks. Each task factorizes a block.

Figure 3.1 shows a graph representation of a network which is a subcircuit extracted from a

bus layout. By multilevel node tearing techniques, the graph is first separated into two parts by

deleting node 13, then into four parts by deleting nodes 6 and 12. The subgraph 4-5-3 can be

further partitioned into two parts by deleting node 5. According to the partitioning, the NBBD

form of the matrix is shown in Figure 3.2. Figure 3.3 shows the ten blocks in this example,

which are A, BI-B3, CI-C4, DI and D2.

The LU factorization for this matrix can be divided into ten tasks, corresponding to the ten

blocks. The dependency relationship of the tasks (task tree) is shown in Figure 3.4. The con-

straint is that a block cannot be factorized until all of its child blocks are done. A number of

tasks can be executed concurrently as long as they have no ancestor-descendent relationship.

1/

F r 3. E p o t nd t

Fiur 3.1 xml/fmltlvlnd ern

U

* 25

I
all a 12 al13

a 21 a 22 a 26

a33 a35 a 36

a" a45

a53 a54 a 5

a 6, a63 a66

a77 a78

I as7 a 8 8 a 8 13

a99 ago a912

al09 aoiC

Sa 111 a1 1 2 aIItI

a 1 29 a 12 11 a, 21

a 13 1 a 138 a 131 1 a 13 1

Figure 3.2. The NBBD matrix of example 3.1

I
I
I
I
I
I

26

D22

C3

C4

B3

I _ _ _ A

Figure 3.3. The blocks of the NBBD matrix in Figure 3.2

A

BI B2 B3

C1 C2 C3 C4

Dl D2

Figure 3.4. The task tree of the NBBD matrix in Figure 3.2

I

I 27

3 3.4. Nested-block Structure for NBBD Matrices

The basic storage unit for nested-block structure is a "block." We define a diagonal subma-

trix plus its border as a block. The blocks are linked in the task tree structure, see Figure 3.5.

I The nested-block structure requires data storage only for the lowest-level blocks. In Figure

3.5, Cl, DI, D2, B2, C3 and C4 are the lowest-level blocks; thus, only the storage for these six

blocks is needed. The matrix elements of each block are stored row by row in one long vector.

I There is an address vector for each block which stores the beginning address of each row, so the

operands can be accessed directly as in a two-dimensional array. Because the upper-level blocks

IAI
'

I 1 D2C

II
I

28

(A, B 1, C2 and B3 in this example) are subblocks of the lowest-level blocks, we can make the

address vector of these blocks point only to the corresponding addresses in the lowest-level

block without requiring any additional storage.

Figure 3.6 shows that the six lowest-level blocks cover all nonempty parts of the entire

matrix and upper-level blocks can just be located inside them. For example, block A is inside

an1 a12 a113 _a 33 a3 6 ~a a45

a2 i a 22 a26 i j a53 :a5 F a54 F

a4 a66 F: a63 'F F

a?31 F

Cl BI A Dl C2 D2

a77 a7 a99 a910 a912 aimi anii a 1 ,2

a g7 ags a813 a io a toi F a 1211 ;a 121 , F

a 139 F 1l29 F F a 131ILFF

B2 iC4 B3

C3

P] The lowest-level block

IIThe upper-level block

SEmpty border

Figure 3.6. T'he lowest-level blocks of Figure 3.5

I

*29

3 block B 1 and block B I is inside block C1. This is the reason we name this storage scheme

nested-block structure. The data of the lowest-level blocks are stored one by one as a row-

oriented two-dimensional array. The memory arrangement is illustrated in Figure 3.7 and the

3 address vector for each block is shown as in Figure 3.8.

A block could possibly have empty borders at some levels, because a subgraph may not be

connected to the cut vertices at all of its upper levels. For example, in Figure 3.1, block DI

3 (node 3) is not connected to node 13 (cut vertex at first level) and block D2 (node 4) is not con-

nected to node 6 (cut vertex at second level) and node 13. The empty borders are indicated by

the shadow area in Figure 3.6. If the empty border is at the end of the block, we can get rid of

the empty border so that the block size as well as memory space are reduced. In this example,

the size of D1 is reduced from 4 x 4 to 3 x 3 and the size of D2 is reduced from 4 x 4 to 2 x 2. If

the empty border is at the middle of the block, we keep the block size unchanged, but put a null

3 in the address vector for a completely empty row, as in Figure 3.9. In this case, the memory

space reduces from 4 x 4 to 3 x 4. The reason why we keep the block size unchanged is that

when considering LU factorization, we have to keep the columns aligned for different levels of

3 blocks so that no scatter-gather operations will be necessary.

We have implemented this data structure in C language. The following record is used to

define a block:I
I
I
I
I

30

Address 0 1 2 3 4 5 6 7 8 9Io, o I a+,,, o I a ~ l 1
Contents a,, I a17 I 11 a - I2 a26 IF I 6

Address 10 11 12 13 14 15 16 17 18 19

Contents a66 IF J a131 1[F [a1313 1 a33 [a35 a36 a

Address 20 21 22 23 24 25 26 27 28 29

Contents a5 I F I a53 JFj F [a4 a45 , I F a77

Address 30 31 32 33 34 35 36 37 38 39io.+1~~~ Io1+ +, --- I, __-]o
Contents [a78 Jag7 I alt3 fa813 f 138 ~ 9 0

Address 40 41 42 43 44 45 46 47 48 49

Contents a912 I o Jalo0 aI~ F__a2 fil [a 1 J1113

Address 50 51 52 53 54 55

Contents a121, a a1212 1 FI a 1311 F [F

-I] a matrix element

W a fill-in a zero

Figure 3.7. The vector which stores the matrix elements

I

* 31

I The beginning address of each row of the block

*A lxI 1 I
I I 2x2I

B2 3x3 L913

B3 2xWI

SC1 4x4 0 4 18[1

C2 2xW L I
C3 3384 4

3C4 3x3 478j jJ1
I D13x3 1 19

3 ~D2 2xW 12
Figure 3.8. Address vectors for each block

I

I
I
I
I

32

0

X X X

nul x7 I I x
A block with address vector data vector
empty border

Figure 3.9. The data storage for a block with empty border

typedef struct blkr I

int inode; /* number of internal nodes or

the size of diagonal submatrix */

int mode; /* the size of block */

struct blkr *son; /* pointer to son block */

struct blkr *par; /* pointer to parent block */

struct blkr *sib; /* pointer to sibling block */

double *address[]; /* address vector */

bllkrec;

For example, for the BI block in Figure 3.5, the inode is 1, mode is 2, son is pointing to Cl,

par is pointing to A , sib is pointing to B2 and address is a array of length 2 storing the beginning

address of the two rows as in Figure 3.8. This record will be referred to later many times when

we describe the algorithms.

I

*33

CHAPTER 4

AN EFFICIENT PARALLEL SOLUTION ALGORITHM

4.1. Introduction

In this chapter, we will introduce an efficient parallel sparse linear system solver on a vec-

tor multiprocessor computer. We consider the solution of linear sets of equations by the direct

method as opposed to relaxation methods. The direct method for solving a linear set of equa-

tions can be divided into an LU factorization step and forward substitution and backward substi-

tution steps. When the system is large, LU factorization dominates the solution time.

Our LU factorization algorithm basically follows Gauss' algorithm, also known as Source-

Row Directed form. Gauss algorithm involves two types of operations:

(1) Normalization operations, which involve dividing the nonzero elements of a row by the

diagonal element.

I (2) Update operations, which involve the addition of a multiple of the elements of a source row

to the corresponding elements of a target row.

To parallelize the LU factorization of sparse matrices one needs to break up the set of

U operations into a number of tasks in order to identify those which can be performed in parallel at

any given step in the solution procedure. In our approach, both fine-grain (done by vectoriza-

tion) and coarse-grain (done by partitioning) parallelisms are adopted. Both forward and back-

I ward substitution can also be parallelized in a similar way.

In Section 4.2, a standard sequential algorithm will be reviewed. In Section 4.3, we will

discuss our parallel algorithms in detail.I
I

34

4.2. A Standard Sequential Algorithm

In this section, we review a sequential algorithm for the direct solution of general sparse

linear systems. Let

A x = b (4.1)

where A is a real, N x N sparse matrix; b is the right-hand side vector; and x is the unknown vec-

tor where both b and x are of dimension N. The solution to (4.1) is usually carried out in two

steps:

(1) LU factorization:

A=LU (4.2)

(2) Forward and backward substitutions:

x = U- 1 L- 1 b (4.3)

where L is a lower triangular matrix with nonzero diagonal elements and U is an upper triangular

matrix with ones on the diagonal. The algorithms for these two steps are listed in Figure 4.1.

4.3. Parallel Algorithms

Our approach to solving (4.1) can be listed in the following steps:

(1) Partition the linear system by multilevel node tearing techniques.

(2) Reorder the matrix into nested-bordered-block diagonal form and store matrix elements in

nested-block structure.

(3) Schedule the blocks according to block dependency for parallel processing.

(4) Distribute jobs to different vector processors to perform LU factorization and forward and

backward substitutions.

I

I 35I

I ALGORITHM LUFACr

for k=1 to N-I do

begin

forall (j >k and Atj #0)do

I AhjAkj /Aa

forall (i >k and Ajk*0) do

Aj=Ai-Ak *Akj;

endforall

endforall

endforI
ALGORITHM FORSUB

for k=1 to N do

forall (j<k and LJ O) do

bk=b -Lkj*bj;

endforall

bk=bk Lk*

endfor

I ALGORITHM BACKSUB

for k=N-1 to 1 do

forall (j<k and Ukj-O) do

xk =bk -Ukj *x.

endforall

endfor

Figure 4.1. Sequential algorithms for direct methods

I
II

36

We already considered steps (1) and (2) in Chapters 2 and 3. In this chapter, we will dis-

cuss the parallelization in our approach.

4.3.1. Task description

The procedures of LU factorization and forward/backward substitutions can be divided into

a number of tasks. Each task operates on a block. The task graph of the forward/backward sub-

stitutions is the same as that of LU factorization, only the constraint for backward substitution is

reversed. The codes for a typical task, blocklufac, block forsub and blockbacksub are listed

in Figure 4.2 and 4.3. The data structure used here is given in Section 3.4.

The algorithms listed in Figure 4.2 and 4.3 are very efficient. The speed is gained because

of the following reasons:

(1) All operations can be directly applied on the matrix elements without making another copy

first.

(2) The operands can be accessed efficiently without any scatter-gather process or tracing a

long linked-list.

(3) Because of the arranged column alignment, the updating operations in LU factorization can

be done simply by adding multiples of one vector to another vector.

(4) The factorization of a block will update its parent block. If its parent block is inside it, the

operation is done implicitly. Otherwise, add the corresponding vectors to the parent block.

(5) Instructions V1, V2, V3, V4 and V5 are vector operations. They can be vectorized to

increase throughput.

I

I 37
I _

block-lufac(B : block)
begin

for i=1 to B.inode do /* Normalization */
begin

source-row []--B.address [i J+i +1;
pivot --B.address [i]+i;

length *-B.tnode-i-I;

for j=I to length do
begin

source row U]+-source row [j]/pivot; /* V 1*/

endfor
endfor

for k=i+I to B.tnode do /* Updating */
begin

target row []-B.address [k]+i +1;

factor (--B.address [k]+i;

for j=I to length

begin
targetrow U c--target row U I + factor * source-row U; /* V2*/

endfor
I endfor

if (B's parent block A is not inside B) /* Updating parent blocks */
* begin

length +-B.mode-B.inode"

for i=1 to length;
begin

sourcerow []'--B.address [i +B.inode]+B.inode;

target row []--A.address [i 1;

for j=l to length
begin

target row U]+-target row U]+source row []; /* V3 *1
endfor

endfor
end endif

Figure 4.2. The LU factorization of a block

I
I

38

block_forsub(B : block)

begin

for i=1 to B.tnode do

begin

length +-min (i B.inode);

sourcerow []--B.address [i];

for j=I to length do

begin

rhs[iJ--rhs[i]-rhsUj] * sourcerow U]; /* V4 */

endfor
if (i B.inode) rhs [i]--rhs [i l/pivot;

endfor

end

blockbacksub(B : block)

begin

for i=B.tnode-I to 1 do

begin

sourcerow []--B.address [i];

for j=i tO B.tnode do

begin
rhs[i]--rhs[i]-rhs[jI * source-row U /* V5 *1

endfor

endfor

end

Figure 4.3. Forward/backward substitutions of a block

4.3.2. A sequential algorithm

A sequential algorithm for solving a matrix in NBBD form using nested-block structure is

listed in Figure 4.4. The subroutines blocklufac, block_forsub and blockbacksub are

I

I 39

described in Section 4.3.1. Because the dependency graph is a tree, the task constraint could be

obeyed by transversing the tree.

4.3.3. Scheduling

Given a number of processors, a schedule assigns tasks to the processors according to a

3 specified order. In our approach, the task graph is determined before processing and the execu-

tion time of each task can be confidently estimated, so static scheduling is used. An asynchro-

nous static scheduling heuristic proposed by Chang [5], [17] is implemented which yields near

optimal results. It is briefly described as follows:

Assign the starting time in a topdown manner; the root of the tree is first assigned to a pro-

cessor; when it is done, its sons can all be available for processing. Each processor keeps a

task queue. The heuristic will choose an available task and assign it to some processor such

that the maximum processing time of all task queues is minimum.

Due to vectorization, we can estimate the execution time by the number of vector opera-

3 tions. The abstract execution time for LU factorization of a block B is given by

STfac (B)%= (tnode -k -1) = mode * inode - inode * (inode- (4.4)

3 There is one exception: the execution time of root block A is given by
tn~p~e (inode~l

Tfac(A)'k =inode * 2 + -1 (4.5)

The scheduling algorithm is listed in Figure 4.5. The scheduling parameters of example 3.1

I for three processors are listed in Table 4.1 and the results are shown in Figure 4.6.

3 In this example, it will take 31 units of time if run on a single processor. By the scheduling

algorithm, it takes 12 units of time, which gives a speedup of 2.6 for three processors.I
I

40

ALGORITHM SOLVE-SQ
begin

lufac (root-block); f* LU factorization ~

forsub (root-block); /* Forward substitution *

backsub (root-block); /* Backward substitution *

end

lufac(B: block)

begin

forall son-blocks Ci of B

lufac (C1);

blockilufac (B3);

end

forsub(B : block)

begin

forall son-blocks Ci of B

forsub (C1);
block-forsub (B);

end

backsub(B: block)

begin

block-backsub (B;

forall son-blocks Ci of B
backsub (B);

end

Figure 4.4. A sequential algorithm for solving NBBD matrices

I

S41
The same schedule can be used in both LU factorization and forward substitution. In addi-

tion, the schedule can be reversed for use in backward substitution.

Table 4.1. Scheduling parameters of example 3.1

I Task A BI B2 B3 CI C2 C3 C4 DI D2
fac 0 2 5 2 7 2 5 3 3 2

iacfac 9 9 5 7 7 5 5 3 3 2

tf 0 0 0 0 2 2 2 2 7 7

I
I
I
I
I
I
I
U
I
I
I
I
I

42

ALGORITHM SCHEDULING
0= (A); /* A is the root block */

A.tf = 0;

for i =0 to noproc do /* noproc is the number of processors */

begin
queue[i]--nil;

ptime[i]=0;

endfor
while 0 is not empty do

begin

get a task T from D with minimum tf;

if there is a tie, choose the one with maximum adac;

get a proc i with minimum ptime.

push task T to queue[i];
if (T.tf > ptime[i]) ptime[i] = T.tf;

ptime[i] = ptime[i] + T.fac;

forall son blocks Xj of T do

begin

Xj.tf = ptime[i];

endforall

endwhile

Definition

queue [i] task queue for processor i;
ptime[i] processing time for processor i;

T.tf : processing time needed after T is finished;

T.fac : the factorization time of T, given by eq (4.4-5);

T.acfac : the accumulative factorization time of T,

T.acfac = T.fac + max X, .acfac }

where Xj are son block of T;

Figure 4.5. Scheduling algorithm

* 43

Prod 1 01 1II I I I I B1 11

50 C4 C3 B3 10
Proc 2 1 1 1 1 1 I

0 D2 C2 B2 10
Pr c3 1 1 1 I I I

5Figure 4.6. Schedule of example 3.1

44

CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1. Introduction

The proposed algorithm has been implemented as a linear system solver on a shared

memory vector multiprocessor computer ALLIANT FX/8. It is written in C language for the

flexibility of experimenting with different data structures for the sparse matrix techniques. Also,

the dynamic memory allocation is easy to implement in C. One disadvantage of using C on the

Alliant FX/8 is that vectorization must be done explicitly by the programmer, while vectoriza-

tion of Fortran is done automatically by the compiler [18].

In Section 5.2, we discuss implementation issues on the ALLIANT. In Section 5.3, we

compare the results of this algorithm with those of a sequential solver using linked-list structure.

In Section 5.4, the relations between speedups and partitioning levels are discussed.

5.2. Implementation

The most important features of our approach are that both concurrency and vectorization

are adopted in the sparse solver. On the ALLIANT FX/8, we can use up to eight vector proces-

sors. Concurrent execution of a procedure is done via the system call concurrentcall. The pro-

cedure to be executed in parallel is a parameter of the system call. Each processor then receives

a copy of the procedure (a task) and executes the code in parallel. The global list scheme is used

to pass the data to parallel tasks. Each processor must then lock the pointer, access the pointed

parameter, update the pointer, and then unlock the pointer such that other processors can gain

access to it.

* 45

U IThe library on the ALLIANT contains a large number of roui;nes that perform operations

in vector- concurrent mode. The name of a vector routine is of the following form:

vecjtype name[_opn] (arguments)

U Type specifies the type of data involved (byte, word, single or double). Name is the name of the

3 operation, add or move. Operation specifies the scope of the operation; for example, vvs means

vector-vector-scalar in a triadic operation.

I There are three routines used to implement vector operations (VI-V5 in Figure 4.2 and 4.3).

I They are

vecddiv vs(result_vec, operandvec, divisor, vsize)

I Divides operand vec by divisor and stores the result in result-vec. This routine is applied

to normalization.

vecdmavsv(result vec, oplvec, multiplier, op2_vec, vsize)

U Multiplies oplvec with multiplier, adds op2_vec to the product and stores the results in

3 result-vec. This routine is applied to updating.

vecddot (result, opl_vec, op2_vec, vsize)

I Finds the dot product of opl_vec and op2_vec and stores the product in result. This routine

3 is applied to forward and backward substitutions.

Vector routines are called only if the vector length is greater than 6 to prevent overhead of

vector startup time. It is found that the vector routines on the ALLIANT take almost the same

3 amount of time for different vector lengths of I up to 128. Figure 5.1 shows the cpu time

required for sequential codes and vector routines vecdiv and vecma. Vec div is not faster

Ithan the sequential codes until the vector length is greater than 11 while vecma gains speedup

3 as long as vector length is greater than 6. Table 5.1 shows the relationship between speedups

I

46

and vector lengths.

The source program of the large sparse linear system solver solvep is listed in the Appen-

dix.

5.3. Results

We show the results of solving two sparse matrix examples. Tables 5.2 and 5.3 show the

speedups of LU factorization at different partitioning levels using the vectorized algorithm with

one processor and eight processors. The results are compared to a sequential solver, also written

in C language using the algorithm described in Section 4.2, with a linked-list data structure and

the Markowitz reordering technique [14]. Tables 5.4 and 5.5 show the storage requirements for

these two different data structures. In linked-list structure, there are 16 bytes required for one

nonzero element (I real number, 2 integers as indices and 2 pointers).

The best results for both examples are obtained with five-level partitioning, where the

speedups are maximum and the memory size required is minimum. It is found that the memory

size at the optimum level is close to that used in the linked-list structure. It is interesting that the

NBBD form of the first matrix has a large dense block; therefore, it does not get much speedup

from the coarse-grain parallelism. But the large dense block can be processed efficiently by vec-

torization and yields a total speedup of more than 20. On the other hand, because the second

matrix is well partitioned into small borders and subblocks of equal size, most of the speedups

are achieved by the coarse-grain parallelism rather than vectorization. From the results of these

two examples, we can see that the proposed algorithm is suitable for factorizing matrices of

differing arbitrary structures.

* 47

4' - - -- - L- - -- - - -

I CPU time (sec)
2 ------------ J--------L------

----------- -------- I

0 50 Vector length 100 150g Vector Multiplication and Addition

3.00

2. 0 -- - - - - - - - - - - I I- - - - - -

CP tin (sc

I.0 - - - - - I -- - - - - I - - - - -

2.00----- ----------- L------

soi CPUe t:m (sec)iacde

0 ahe 50n :vector loiengh10s5

3 Figure 5. 1. CPU time for sequential codes and vector routines (100 iterations)

48

Table 5.1. Speedups and vector length

vector length vecdiv vecma
8 0.859 1.267

16 1.467 2.188
32 2.800 4.733
64 5.188 8.750

128 9.765 15.444

Table 5.2. Speedups

matrix size: 100 x 100
no. of nonzeros : 347

level 1 processor 8 processors
1 9.32 8.91
2 9.01 8.45
3 11.42 21.34
4 11.26 21.34
5 10.96 21.34
6 9.65 21.34
7 8.91 20.28

Table 5.3. Speedups

matrix size : 237 x 237
no. of nonzeros: 647

level 1 processor 8 processors
1 0.38 0.37
2 0.88 2.28
3 1.13 4.65
4 1.31 6.05
5 1.28 6.67
6 1.00 5.00
7 0.82 3.57

I

* 49

I Table 5.4. Memory size

matrix size: 100 x 100
level no. of nonzeros linked list nested-block

(include fill-ins) (bytes) (bytes)
1 1081 17.3K 40K3 2 1087 17.4K 39.5K
3 1091 17.5K 23.7K
4 1216 19.5K 19.7K1 5 1215 19.4K 19.7K
6 1177 18.8K 20.4K1 7 1169 18.7K 23.6K

Table 5.5. Memory size

___matrix size : 237 x 237
level no. of nonzeros linked list nested-block

(include fill-ins) (bytes) (bytes)
1 860 13.8K 224.7K
2 1019 16.3K 77.4K
3 1255 20.1K 41.0K
4 1419 22.7K 24.7K
5 1477 23.6K 17.0K
6 1487 23.8K 17.IK3 7 1441 23.1K 18.1K

5.4. The Optimal Partitioning Level

In our approach, the total parallel factorization time may vary with different partitioning

1 levels for a given number of processors. As the number of levels in the NBBD form increases,

the number of tasks increases, but the size of each task decreases. The total CPU time would

seem to decrease because smaller task granularity has higher parallelism. On the other hand,

3 because the size of each block decreases, the vector length decreases; thus, the speedups gained

1 by vectorization are lost. Also, as the number of levels in NBBD form increases, the data

storage will initially decrease because more zero elements are discarded, then increase because

3 of too many copies of border blocks. Also as the levels increase more "block fills" are created.

3

II

50

We have observed that the best level of partitioning that results in minimum cpu time usu-

ally requires the least block storage. To determine the optimal level of partitioning, the original

matrix structure is partitioned into the maximum hierarchy, then flattened to a certain level by

combining the submatrices at lower levels to their ancestor at that level. The CPU time and

storage can be estimated for each level. The level corresponding to minimum run time is then

used in solving the linear equations.

U

*| 51

I CHAPTER 6

* APPLICATION IN CIRCUIT SIMULATION

6.1. Introduction

I Circuit simulation is a very time-consuming and numerically intensive process, especially

3 when the problem size is large as in the case of VLSI circuits. The standard approach to solving

the circuit equations is commonly referred to as the direct method and is used in the SPICE2

5 program. The simulation process includes the following steps:

3 (1) The circuit problem is described by a system of ODE equations using the modified nodal

approach [19].

3 (2) An implicit integration method is used to convert the differential equations into a sequence

3 of systems of nonlinear algebraic equations.

(3) Newton-Raphson's method is used to transform the nonlinear algebraic equations into

I linear equations.

1 (4) The resulting sparse linear equations are solved using LU factorization.

Circuit simulation requires the repeated direct solution of sparse linear systems with identi-

I cal matrix structures, as in step (4). The linear system solver we discussed in previous chapters

3 is especially suitable for an application such as circuit simulation. In addition, because the

hierarchical description for circuits is used for almost every designer, multilevel node teariitg is

I achieved naturally by the specified hierarchy. The program iPride written by Mi-Chang Chang

3 is a hierarchical direct-method parallel circuit simulator [17]. Our algorithm has been imple-

mented in iPride and called iPrideV for solving linear systems more efficiently by introducingI
I

52

vectorization.

6.2. Circuit Storage Scheme

In terms of circuit structure, either the multilevel node tearing technique or user-specified

hierarchy produces a tree of subcircuits where each diagonal submatrix represents the internal

nodes of a subcircuit and the border submatrix represents the interconnection of the terminal

nodes of the subcircuits. The tree of subcircuits matches the tree of blocks in the NBBD form.

Thus, in our approach, the subcircuits are stored in a similar way as in the nested-blh ck data

structure. The difference is that a subcircuit record has to keep information of element connec-

tions, nodal voltage of previous time points, and so on. A typical subcircuit record is listed in

Figure 6.1.

Since the circuits are stored in nested-block structure, the algorithm in Chapter 4 can be

carried out to solve circuit equations with the same high efficiency. There is another advantage

of the nested-block structure over other data structures: the values of the network variables,

"stamps" [19], are loaded into circuit matrices efficiently. For example, a resistor with conduc-

tance g between node i and node j can be loaded into the matrix by the following codes:

address[i][i] = address[i][i] + g;

address[i]U] = address[i]U] - g;

addressUf[i] = addressU][i] - g;

addressU]U] = addressU]U] + g;

The loading and updating of operands can be accessed in the same way as in a two-dimensional

array.

3
* 53

I
typedef struct subckt

/* The nested-block data */

3 int inode; /* number of internal nodes */

int mode; /* number of total nodes */

3 struct subcktrec *son; /* pointer to son block */

struct subcktrec *par; /* pointer to parent block */

struct subcktrec *sib; /* pointer to sibling block */

double *addresso; /* address vector */

/* The circuit data */

3 struct noderec *nodelist; /* node list */

struct termrec *termlist; /* terminal node list */

struct resrec *reslist; /* resistor list */

struct caprec *caplist; /* capacitor list */

struct mosrec *moslist; /* mos transistor list */

struct vscrec *vsclist; /* voltage source list */

I

I } subcktrec;
Figure 6.1 Example of subcircuit recordI

6.3. Results

I The speedups of iPrideV are compared with the original iPride run on one processor,u because the original iPride program basically use the same algorithms and data structures as

SPICE2 for one processor. Tables 6.1 and 6.2 list the speedups of two examples, and Tables 6.3

I and 6.4 compare the memory size between two different data structures (linked list and nested-

3 block).

I

54

Table 6.1. Speedups

Circuit size : 642 nodes
no. of nonzeros : 1919

level I processor 8 processors
5 0.44 2.75
6 0.51 3.67
7 0.50 4.13
8 0.49 3.01
9 0.45 2.75

Table 6.2. Speedups

Circuit size : 237 nodes
no. of nonzeros : 1175

level 1 processor 8 processors
3 0.77 3.03
4 1.03 4.71
5 1.15 5.30
6 1.06 6.06
7 1.03 6.06

Table 6.3. Memory size

Circuit size: 642 nodes
level no. of nonzeros linked list nested-block

(include fill-ins) (bytes) (bytes)
1 1926 30.8K
5 2496 39.9K 51.9K
6 2718 43.5K 30.0K
7 2852 45.6K 21.4K
8 2934 46.9K 19.7K
9 2938 47.0K 19.8K

U

1 55

3 Table 6.4. Memory size

Circuit size: 237 nodes
level no. of nonzeros linked list nested-block

(include fill-ins) (bytes) (bytes)
1 1175 18.8K3 3 1509 24.1K 40.1K
4 1781 28.5K 22.5K
5 1901 30.4K 14.5K
6 1837 29.4K 13.6K
7 1791 28.7K 14.1K1

I

I
1
I

I
1
I
I
U

56

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis presents an approach to efficiently solve a large sparse linear system by exploit-

ing parallel vector processing. In order to gain maximum speedups from the parallel vector

computer structure, a new data storage scheme, namely, the nested-block, was proposed.

The nested-block is a structure designed especially for the multilevel node tearing tech-

nique. It stores the matrices in nested Bordered-Block Diagonal form block by block in one long

vector. The storage scheme preserves the sparsity of the matrices, facilitates both parallelism

and vectorization, and simplifies vector operations.

Our algorithm has been implemented in the ALLIANT FX/8, which is a supercomputer

with eight vector processors. The speedups obtained in solving a large linear systems using

eight processors range from 6 to 20 compared to the run time of a sequential program using Mar-

kowitz ordering and linked-list structure.

The approach is also applied to circuit simulation for VLSI design. The NBBD structure

essentially matches the hierarchical circuit description used at the design phase, or it can be

obtained by any partitioning techniques. Because the circuit is stored subcircuit by subcircuit,

this data structure is also very suitable for subcircuit latency exploitation or mix-mode circuit

simulation.

Our future works include:

(1) Implement the algorithm on the Cedar multiprocessor computer where the architecture is

characterized by a hierarchical organization of both its computational capabilities and

memory system. It consists of multiple clusters; each cluster is an Alliant FX/8 comprising

I

S57

3 eight vector processors. Thus parallelism can be exploited at one more level.

3 (2) Construct a circuit simulator that has a hierarchical storage structure which does not make

full copies for the same subcircuits only creates storage for changeable data of each subcir-

I cuit instance. The idea is similar to the hierarchical circuit description language, which

3 uses subcircuit macros or device models to save duplicate information.

(3) Implement multilevel subcircuit latency in the circuit simulator. In transient analysis, each

I subcircuit can take different time steps. Those subcircuits that have long time steps and are

3 assumed to be latent can be evaluated by a linear circuit model [20].

We will continue to develop techniques to improve the performance of the sparse linear

I system solver, circuit simulator and other CAD tools.

I
U
I
1
I
I
1
I
I
U

58

APPENDIX

PROGRAM SOLVE P LISTING

#include <stdio.h>
#include <sys/types.h>
#include <sys/times.h>
#include <cncall.h>
#define MAX 250
#define nil 0
#define true I
#define false 0
#define VEC 4

typedef struct blkr{
char name[80],lock;
int oldest,size,tsize,nosub,col,wts,acwt,tf,fnshf;
struct blkr *subblk,*sib,*par;
float **mtrx;

1 blkrec;

/*

name: name of the block record
size: the dimension of the block
tsize: the dimension include parent's size
nosub: the no. of subblocks
col: the first col no. in the whole matrix
subblk: pointer the first subblock
sib: pointer to next block at the same level
par- pointer to the parent block
mtrx: pointer to the pointer array which point to row arrays that contains

matrix elements
wts:
acwt:
if:
fnshf:flag that indicate the block has been processed
*/

tvpedef struct qr
blkrec *ptr;
struct qr *next;

qrec;

blkrec *toplev;
char prtlock,string[80],name[20];

* 59

U float full[MAX]IIMAX];
float *rhs;
int nonodeptixne[8];

qrec *que,*qind,*pq[81;

blkrec *readtr()

int ijk,tag,tagl;
float x;

blkrec *pl,*p2,*p3;

pl=(blkrec *)malloc(sizeof(blkrec));I scanf("%d %d %s" ,&pl ->size,&p I ->nosub,p 1 ->namie);
1* printf('%d %d %sO~p 1 ->size,p I ->nosubpl ->namne); *

p1 ->subblk--nil;I pl->sib--nil,
pl->par--nil,
p1I ->oldest=-O;I p3=nmil;
for (k=0k<plI->nosub;++k)

p2=readtro;I p2->par--pl;
if (p3---ni)

p1 ->subblk=p2;I p2->oldest= 1;

else p3->sib=p2;I p3=p2;

1 tag=true;
tagl--true;
while (tag)f

scanfQ'%d %d %f",&i,&j,&x);
if (tagl)(

p1 ->col=i- 1;I tag 1=false;

if (i=O) tag=false;
else if 0j=0) *(rhs+i4l).-;
else full[i-1]U-1I=x;

if (tag) nonode=i;

retum(p 1);

60

formnax(pl)
blkrec *pl;

int ij,size,offset;
blkrec *p2 ,*p3;
float a,*b,**row,**p2m;

p1 ->tsize=p 1 ->size;
p3=pl ->par;
if (p3 != nil) pl->tsize += p3->tsize;

p2=pl ->subblk;
while (p2! -nil)(

formax(p2);
p2=p2->sib;

1* printf ("formax %sO,pl->namne); *

size=p 1 ->tsize;
row=p I->mtrx=(float * *)malloc(size*sizeof(b));

p2=pl ->subblk;
if (p2! =nil)I

offset=p2->size;
p2m=p2->mtrx;
for(i=O;i<size;±+i)

*(row+i) = *(p2m+offset+i) + offset;

else
for (i=O;i<size;f+i)

* (row+i) = (float *)malloc(size*sizeof(a));

for (i=-O;i<pI->size;++i)
for 0j=0; j<plI->size; -H-j)

*(*(row+i) + j) = full[plI->col+il[plI->col+j];

p3=plI->par;
offset=p I ->size;
while (p3 !--nil)f

for (i=-O;i<plI->size;++i)

* 61

3for -jp3>ie+)
**(row+i) +j+offset) =full [pl. ->col+i] [p3->col+j];

**(row+offset+j) +i) =full[p3->col+j] [p1 ->col+iI;

offset += p3->size;
p3 = p3->par;

forinaxl(pl)I blkrec *pl;

mnt ij,offset;U blkrec *p2,*p3;
float a,*b,**row;

p2=pl1 ->subblk;
while (p2! -- il) f

/printf ("formax %sO,pl->name); *

row = plI->mtrx;

3 for (i=O;i<pI ->size;++i)
for 0--O; j<pl1->size; ++j)

*(*(row+i)+j)=ul[I >oi][I-clj;

p3=pl ->par;
offset=p I ->size;
while (p3 !=nil)(U ~ ~~~~~for (i=O; <p ->silz+) f1[bcIil3.c1g*(rwi +j+offset) ulp>clip3cojl

**(row+offSet+j) i= ulp-cljpl>oi;

offset += p3->size;

p3= p-p

62

if (!(pl ->oldest))(
for (i=p 1 ->size; i<p I1->tsize;++i)

for (j=pl ->sizej<plI->tsize;++j)
**(row+i) +j) 0;

prmm(pl)
blkrec *pi;

int ij;
bllcrec *p2;

p2 =plI ->subblc;
while (p2 ! -nil)(

prtmx(p2);
p2=p2->sib;

printfC'%sO,pl ->narne);

for (i=0;i<pl ->tsize;++i)
forO-j=0;j<plI ->tsize;-i+j)

printfC"%f ", *(*(pl..>mtrx +ii) +j));
printf("0);

lufac(id)
int id;

int ijkjength,size,tsize;
float fac,*src,*tar,*srcrow,*tarrow,**pl1m,**p3m;
blkrec *pI ,*p2,*p3,*p4,
qrec *ql;

ql=pqfid];
while (qlI! -nil)f

pl=ql->ptr;
size=p I ->size;
tsize=plI->tsize;

36

3 if (pl==-toplev) size--;

3 p2=pl ->subblk;
while(p2!=nil)

while(p2->fnshf);
p2=p2->sib;

lock(&plI ->lock);U p3=pI;
while ((p3->par!=nil) && (p3->oldest))

lock(&p3->par->lock);I p3=p3->par;

/* lock(&prtlock);
printf('proc %d %sOjid,pl->namne);
umlock(&prtlock); *
plm=pl->mtrx;U for (i=-O;i<size;++i)

srcrow = *(plm+i);
tar =srcrow+i+1;Ifac *(srcrow+i);
length--tsize-i-1;
if (length > VEC) vec...sdivvs(tar,tar,facjlength);U else for(k=O;k<Iength;i+k) *(tar+k) /= fac;
src = tar;
for (j=i+ 1 ;j<tsize;+ej)IU tarrow = *(plm+j);

fac = *(tafow+i);
if (fac!=O)1
tar = tarrow+i+1;
if (length > VEC) vec-sma-vsv(tar,src,-fac,tar,length);
else for(k=O;k<.length;++k) *(tar+k) += *(src+k) * -fac;

unlock(&pl ->lock);
p3 =pl;U while ((p3->par!=nil) && (p3->oldest))(

unlock(&p3->par->lock);
p3=p3->par;

p3=pl->par;

64

if ((p3 !=nil) && !(pl->oldest))(
while((p3 !=nil) && (p3->oldest))j

lock(&p3 ->lock);
p3=p3->par;

p39p Il->par;
length = p3->tsize;
p3m-p3->mtrx;
for (i=-O;i<length;++i)

arc = *(plm+size+i) + size;
tar = *(p3m+i);

if (length > VEC) vec_sadd-vv(tar,src,tar,length);
else for(k=Ok~ength;++k) *(tar+k) += *(src~ek);

while((p3 !=-ni) && (p3->oldest))
unlock(&p3->lock);
p3=p3->par;

pl->fiishf=-O;
qi =ql ->next;

vec_sdot(iproduct,v 1 ,v2,length)
float *iproduct,*vlI,*v2;
int length;

int i;

*iproyduct = 0;
for(i=0O;i<length;++i)

*iproduct += *(vj..j) *(v+)

forsub(pl)
blkrec *plI;

blkrec *p2 ,*p3;
float *vircl1,*vec2,temp;
int offset,ijlength;

p2=pl ->subblk;
while (p2!=nil)(

U 65

Uosbp)
p2=p2->sib;

Xrhs+plI >co1) =**p I1.)tfl.;
for (i=1;i<p1->size;++i)~U vec I = rhs+plI->col;

vec2 =*I->mr~)
length = i
vec-sdot (&temp,vecl ,vec2,length);
(rhs+pl.>col+i) -=temp;3(rhs+p I >coI+i) 1 (*(plI..>mtrx+i) +)

p3-pl->par;I ength-=pl->ie
offset=p 1 ->size;
while (p3! -- il) IIb~=~~3>ie+i

vec I = rhs+p I->col;
vec2 = *(pl..>mtr+offset+i);Uvec -sdot (&temp,veclI,vec2,length);

*(rhs+p3..>col+i) -=temp;

offset += p3->size;
p3=p3->par;

backsub(pl)
blkrec *pl;

bllcrec *p2 ,*p3;Iit i,length,offset;
float *vecl ,"vec2,temp;

offset-- >ie
while (p3 !--nil)

for (i--O;i<p 1 ->size;i+i)
veci = rhs+p3->col;U vec2 = *(pl >mtrx+j) +offset;

vec..sdot (&temp,vecl ,vec2,length);3 *(rhs+p I .>col+i) -= temp;

66

offset += p3->size;
p3=p3->par;

for (i=pl ->size- 1;i>O;--i)(
vec 1 = rhs-ep 1 ->co14-i;
vec2 = *(pl..>mtrx+i-1) +i;

length = plI->size - i
vec-sdot (&temp,veclI,vec2,length),

*(rhs+pl1->col+i- 1) -= temip;

p2=pl ->subblk;
wbile(p2!-nil)

backsub(p2);
p2=p2->sib;

prLthsO

int i;

for (i=-O;i<nonode;+4i) printfC' %d %gO,i,*(rhs+i));

co, nt(pl)
bik ec *pl1;

blkrec *p2;
int ak;

ak=-O;
p2=plI ->subblk;
while (p2! -nil)(

count(p2);
if (p2->acwt>ak) ak=p2->acwt;
p2-p2->sib;

p1I ->wts=p I ->size;
p1 ->acwt=p 1->wts+ak;
printf("%s %dO,pl ->name,pl ->size);

* 67

U pushq(b 1)
blkrec *bl;

qrec *ql,*q2;

Uql=(qrec malcszoqr);
q I ->ptr--b 1;
ql1->next=que;
que=ql;

Ublkrec *oq

3qrec *l*2*3
int ijk;

ql=que;I if (ql==niul) retum(nil);
i=1e6; M*ind a task with the minimum starting time*/
k=-O;I q2=-nil; q3--ni;
while (ql1! -nil)(3if ((ql->ptr->tf<i) 11 ((ql->ptr->tf==i) && q-pr>ctk)

q3=q2;
i=ql ->ptr->tf;U k=ql ->ptr->acwt;

q2=q 1;
ql=ql->next;

if (q3!=nil)
=q3->next;

q3->next=ql ->next;

else
ql1=que;
que=q 1 ->next;

retum(qlI->ptr);

sched(proc,tag)3 mnt proc,tag;

68

int ijk;
blkrec *bl,*b2;
qrec *ql;

if (tag)
for (i=-O; i<proc; i++) pq[i]=nfl;

blI=popqo;
while (bI!=-nil)

k=1e6; /* find idle proc ~
j=-O;
for (i=-O; i<proc; i++)

if (ptime~i]<k)
k=ptimne[i];
j=i;

if (ptimneU]<bl->tf) ptimneU]=bl->tf;
ptirneUl=ptimneU]+bl ->wts;

if (tag)I
ql=(qrec *)n.aJloc(sizeof(qrec));
ql ->ptr-bl1;
qi ->next=pqU];
pqU]=ql;

b2=blI->subblk;
while (b2!--nil)

b2->tf--ptimneU];
pushq(b2);
b2=b2->sib;

blI=popqo;

k=-O;
for (i=-O; i<proc; i++)
if (ptime[i]>k) k=ptimne[iJ;
if (tag)

for (i=O; i<proc; i++)
printfQ'proc %dO,i);
q 1=pq[i];
while (ql!-nil)~

printfC' %s w=%d ts=%dO,
q I ->ptr->name,q I ->ptr->wts,q I ->ptr->tf);
ql=ql->next;

* 69

return(k);

init(pl)
blkrec *pj;

Iblkrec *2
p2-plI->subbik;3 while (p2 != nil)f

p2->fnshf= 1;3 init(p2);
p2=p2->sib;

cntlev(p 1)
blkrec *pl;

int ij;
blkrec *p2 ;

p2=pl ->subblk;
if (p2=--nil) return (1);

* elsef(
i=-O;
while (p2 !=nil)f

j=cntlev(p2);
if Q>i) i=j;
p2-p2->sib;

return (i+1);

main(argc ,argv)
int argc;
char *argv[];

mnt ijk;
struct tins *tixlinkJlj;

float a,tl ,t2,t3,t4;

70

k 1;
if (argc>=2)

i=-O;
k=-O;
while (argv[l][~i]!='')

k=k* 1O+argv[1][i+i]- '0';

gets(string);
printfC'%sO,string);
gets(name);
printfC'%sO,narne);
for (i=0O;i<MlAX;++i) for (j=0;j<MIAX;++j) full[iIU]=O;
rhs=(float *)maJoc(N.4&J*sizeof(a));
toplev=readtrO;
toplev->oldest= 1;
printfC'0);
forinax(toplev);

que--nil;
count(toplev);
printf("scheduling0);

i= 1;
while (i<=8)(

for 0--0; j<8; j++) ptimeUl=0;
pushq(toplev);
j=sched(i,false);
printf("%1 ld",j);

else i+=2;

printfC'O);
for 0j=0; j<8; j++i) ptiimeU]=0;
pushq(toplev);
sched(7,true);
timelink = (struct tins *)malloc(sizeof(stnict tins));
times(tiinelink);
t3= (float)timnelink->tms-utimne;
t4= (float)tiinelink->tms-stixne;

for (i=O;i<k;++i)f
forinax I (toplev);

U 71

times(timel ink);
t3= (float)timelink->tms-utinme-3;
t4-- (float)timelink->tms-stime-t4;
times(timelink);
tl= (float)timelink->tms -utime;
t2= (float)timelink->tms _stimne;

U for (i--O;i<k;++i) I
formaxl1(toplev);
init(toplev);
concurrent-call (CNCALLNLJMROCICNCALLNQ-QUIT,lufac);

I times(tinielink);
t 1= (float)timelink->tnis-utimne-tlI-t3;3 t2= (float)timelink->tms-stiine-t2-t4;

forsub(toplev);3 backsub(toplev);

1* tirnes(timelink);
tl= (float)timnelink->tms-utime-ti;

3 prtrhso;

i=cntlev(toplev);
printff'1=%d iter=-%d cpu time %8gs user %8gs sysO,ik,t1160/k,t2/60Ac);

72

REFERENCES

[1] J. W. Huang and 0. Wing, "Optimal parallel triangulation of a sparse matrix," IEEE
Trans. Circuit Syst., vol. CAS-26, pp. 726-732, Sept. 1979.

[2] 0. Wing and J. W. Huang, "A computation model of parallel solution of linear equa-
tions," IEEE Trans. Computers, vol. C-29, July 1980.

[3] D. P. Arnold, M. I. Parr, and M. B. Dewe, "An efficient parallel algorithm for the solu-
tion of large sparse linear matrix equations," IEEE Trans. Computers, vol. C-32, Mar.
1983.

[4] F. Yamamoto and S. Takahashi, "Vectorized LU decomposition algorithms for large-
scale circuit simulation," IEEE Trans. CAD, vol. CAD-4, no. 3, pp. 232-239, July
1985.

[5] M. Chang and I. N. Hajj, "iPRIDE: A parallel integrated circuit simulator using direct
method," Proc. ICCAD'88, pp. 3G4-307, 1988.

[6] P. Sadayappan and V. Visvanathan, "Circuit simulation on shared-memory multipro-
cessors," IEEE Trans. Computers, vol. 37, pp. 1634-1642, Dec. 1988.

[7] C. C. Chen and Y. H. Hu, "Parallel LU factorization for circuit simulation on an
MIMD computer," Proc. ICCD'88, pp. 129-132, 1988.

[81 R. E. Lord, J. S. Kowalik, and S. P. Kumar, "Solving linear algebraic equations on an
MIMD computer," J. ACM, vol. 30, no. 1, pp. 103-117, Jan. 1983.

[9] J. A. G. Jess and J. G. M. Kees, "A data structure for parallel LU decomposition,"
IEEE Trans. Computers, vol. C-31, no. 3, pp. 231-239, March 1982.

[10] D. Smart and J. White, "Reducing the parallel solution time of sparse circuit matrices
using reordered gaussian elimination and relaxation," Proc. ISCAS'88, pp. 627-630.

[11] A. George and J. W. H. Liu, "An automatic nested dissection algorithm for irregular
finite element problems," SIAM Numer. Anal., vol. 15, pp. 1053-1069, Oct. 1978.

I

I 73
I

[12] B. W. Kemighan and S. Lin, "An efficient heuristic procedure for partitioning
graphs," Bell Syst. J., vol. 49, pp. 291-307, 1970.

[13] P. Sadayappan and V. Visvanathan, "Modeling and optimal scheduling of parallel
sparse gaussian elimination," Technical Report, AT&T Bell Laboratories, 1988.

3 [14] K. S. Kundert, "Sparse matrix techniques," in Circuit Analysis, Simulation and
Design, Part 1, A. E. Ruehli, Ed., Amsterdam, North-Holland: Elsevier Science Pub-
lishers B.V., 1986, pp. 281-324.

[15] I. S. Duff, A. M. Erisman, and J. K. Reid, in Direct Methods for Sparse Matrices, New
York: Oxford Science Publications, 1986, pp. 24-25.

[16] P. Sadayappan and V. Visvanathan, "Efficient sparse matrix factorization for circuit3 simulation on vector supercomputers," IEEE Trans. CAD, vol. 8, no. 12, pp. 1276-
1285, Dec. 1989.

5 [17] M. Chang, "Efficient direct-method parallel circuit simulation using multilevel node
tearing," UILU-ENG-89-2201 DAC-13, Coordinated Science Laboratory, Univ. of Illi-
nois at Urbana-Champaign, 1989.

[18] CONCENTRIX C Handbook, Alliant Computer Systems Corp., Feb. 1987.

3 [19] I. N. Hajj, "Analysis of linear circuit," in Fundamental Handbook of Electrical and
Computer Engineering, vol. 3, 1983.

[20] P. F. Cox, R. G. Burch, P. Yang, and D. E. Hocevar, "New implicit integration method
for efficient latency exploitation in circuit simulation," IEEE Trans. CAD, vol. 8, no.I

I
I
I
I

